
Re2~)p<0) . For example, at Re = 0.1, in all cases considered in the present study p(~) is no 
%0 

more than 12% of p(O), while p(~) does not exceed 0.1% of p(O), i.e., in neglecting the third 
expansion term the error in the calculation does not exceed 0.1%. 

NOTATION 

R, z, ~ , cylindrical coordinates of points of the mean surface of an annular channel; ~, 
n, ~ , dimensionless orthogonal coordinate system; ~ = const, surface of revolution correspond- 
ing to the mean surface of the channel; n, ~ , meridional and angular coordinates at the mean 
surface, n = n, and n = n2, boundaries of the annular channel; Hn(n , ~), H~(n, ~), dimension- 
less Lame coefficients; p, pressure; p, fluid density; ~, kinetic viscosity coefficient, V, 
characteristic flow velocity; Q, total fluid discharge through the annular channel; Co, C n, 
C_n, coefficients of expansion (4) in a Fourier series; Xn(n, ~), asymptotic expansion coef- 
ficients of the dimensionless pressure 5, defined by Eqs. (2), (7), and (8) for n = 0, I, 2; 
and Ap, pressure drop in the channel. 

1. 
2. 
3. 
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STABILITY OF THE BOUNDARY LAYER OF LIQUID UNDER A NONUNIFORM TEMPERATURE 

DISTRIBUTION OF THE SURFACE 

Yu. B. Lebedev and V. M. Fomichev UDC 532.526 

We study the effect of a longitudinal gradient of the surface temperature on the 
stability of the boundary layer of an incompressible liquid. A comparison shows 
a good agreement of the results with experimental data. 

Only a relatively small number of works have been devoted to the problem of stability 
and the transition to the turbulent regime in a boundary layer of an incompressible liquid at 
a surface with heat-exchange [1-9]. It was noted in the first investigations (which~ere car- 
ried out for water [1, 2]) that the surface temperature affects considerably the transition 
process. The nature of this influence is opposite to that which is observed in gases. This 
is caused by the decrease of water viscosity with increasing temperature. Cooling causes the 
appearance of an inflection point in the mean velocity profile near the wall and, consequently, 
it destabilizes the flow. Heating, on the other hand, gives a fuller velocity profile and, 
accordingly, it stabilizes the flow. 

A sufficiently strong dependence of the stability characteristics (the minimum critical 
Reynolds numbers and the coefficients of spatial growth of the perturbations) for a surface 
layer of water on the superheating of the surface gives grounds for expectations that, for an 
appropriate temperature distribution along the surface, a considerable increase or decrease 
of the flow stability can be obtained. Detailed investigations of this problem can play an 
important role in the solution of the control of the boundary layer. The practical importance 
of the problem is confirmed also by the results of the experimental work [8] which have a 
preliminary character and indicate that the transition of a laminar boundary layer to a turbu- 
lent one depends, to a considerable degree, on the longitudinal temperature gradient at the 
wall. 

In the present work we study the effect of nonuniformity of the surface temperature dis- 
tribution on the development of small perturbations in a laminar boundary layer of an incom- 
pressible liquid. It is shown that, when the total heat flux remains unchanged, the posi- 
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tion of the point where stability is lost depends considerably on the longitudinal tempera- 
ture gradient. 

FORMULATION OF THE PROBLEM 

We consider the stability of a planar boundary layer of a viscous incompressible liquid 
with a nonuniform temperature distribution. We write down the Navier--Stokes equatins, the 
equation of continuity and the energy equation neglecting viscous dissipation: 

P D--5 - = -  o-7- +-gy j + - g ;  ' 

Dv Op + 0 [ ( Ou Ov )] 4 " Or) 
 "Di = W W / + - L ;  + 2  

Ou .4- Ov = 0 ,  cvp - - -  ~ "4- 
ay Dt T ay/ 

Here 

D O 0 §  q-v 
' D t  . . . .  Ot Ox 

The boundary conditions are 

u = 0 ,  v = 0 ,  T = T ~  ( y = 0 ) ,  u--+ue, 
The surface temperature will be specified in the form 

O 
ag" 

T--+ Te (y-+ oo). (2) 

T~=Te§ (3) 

Here, ~ = x/L,  The Prandt l  number and the v i s c o s i t y  of the l i q u i d  are known func t ions  of 
the temperature 

Linearizing the system of equations (i) we obtain equations which describe the develop- 
ment of small perturbations in the boundary layer. It is assumed that the characteristic 
length of the temperature change, which is commensurable with the size of the surface L, is 
much longer than the wavelength of the proper perturbation (the Tolmin--Schlikhting wave) X 0. 
This assumption makes it possible to use the approximation of a plane-parallel boundary layer, 
and to represent the perturbation of the flow function in the form of a plane wave~(y)exp(i~(x--ct)). 
The equations for the perturbations can be written in the form of a single relation 

i~  R [(u - -  c) (~" - -  ~2~) _ u"~] = ~ (~iv _ 2~2~. § ~ )  + 2~' ( ~"  - -  ~2~,) + ~. (~..4- ~ ) .  ( 4 )  

The boundary conditions are 

~ = 0 ,  ~ ' = 0  01=0) ,  ~-+0,  ~ ' -+0 (~ -~o~) .  (5) 

Here and below, the  prime i n d i c a t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to the  d imens ion les s  c o o r -  
d i n a t e  n = y(ue/X~e)V*. I t  i s  known tha t  t h i s  t r a n s f o r m a t i o n  g ives  e q u a t i o n s  of  t hebounda r y  
l a y e r  which a l low,  under c e r t a i n  c o n d i t i o n s ,  an au tomode l l ing  s o l u t i o n .  

I t  should a l s o  be noted  t h a t  the  equa t ion  fo r  p e r t u r b a t i o n s  (4) c o n t a i n s  terms wi th  the  
v i s c o s i t y  d i s t r i b u t i o n  and i t s  d e r i v a t i v e s  which,  a l o n g s i d e  the  v e l o c i t y  p r o f i l e ,  a f f e c t  
s t r o n g l y  the  s t a b i l i t y  c h a r a c t e r i s t i c s  of the  boundary l a y e r  of water  [3] .  When the  v i s -  
c o s i t y  i s  cons t an t  (7 = 1) ,  r e l a t i o n  (4) r educes  to the  known Orr--Sommerfeld equa t i on .  

Thus, the  problem i s  reduced to the  d e t e r m i n a t i o n  of  e i g e n v a l u e s  of  Eq. (4) wi th  the  
homogeneous boundary c o n d i t i o n s  (5) .  

The s o l u t i o n  of  the  bounda ry -va lue  problem (4) and (5) r e q u i r e s  the  knowledge of  the 
functions in the coefficients of relation (4). These are the distributions of the average 
velocity and viscosity over the thickness of the boundary layer, and also their first and 
second derivatives with respect to the transverse coordinate. These distributions can be 
found by solving the equations of the thermal boundary layer which, in terms of the variables 

and n, have the form 

( .#.) ,  + .  m + 1 f . f  + m ( I  - -  f " )  = '~ i ,  
a n 2 

a~lc) ( Y 0 ' ) ~  § ----7-m§ ,O'§ a § ~------d- --~02, (6) 
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Fig. i. Coefficients of the spatial growth 
of perturbations in the case of a power 
temperature distribution for various values 
of the parameter n, and R = 800. The full 
line corresponds to numerical calculations, 
and the dashed lines corresponds to an ap- 
proximation of the experimental data of 
[8]: a) T w- T e = 1.67~ i, 4) n = -0.2; 
2, 5) 0; 3) 3; b) T w- T e = 2.78~ i, 4) 
n =-0.2; 2, 5) 0; 3) i. 

q h = ~ ( / '  of' f,, of) ( ~ - - o '  ). a - - ( -  q'~ = f' ao of 
' " a~ a~ 

The boundary conditions are 

~=o,  f ' = o ,  o = o o q = o ) ,  f ' -~ l ,  o-+1 (~--,-oo), 

where 

(7) 

@ T - - T v ,  ~ due ~ u 
- m - , f =  d ~ .  

T ~ - - T ~  ' u~ d~ .J ur 
0 

It should be noted that for n = 0, the right-hand sides of the equations of the system (6) 
vanish, and the system takes the automodeling form. 

An estimate of the effect of a particular temperature distribution on the stability re- 
quires a comparison of the different distributions while fixing either the total amount of 
the energy supplied, or the temperature in some given point of the surface. In the present 
work, the comparison is carried out for equal integrated thermal fluxes at the wall. It was 
noted above that, in this case, one can umambiguously establish the most favorable distribu- 
tion from the viewpoint of an increase of stability of the boundary layer. The equality of 
the heat fluxes is written as follows: 

1 1 

0 0 

The relationship between the homogeneous and inhomogeneous temperature distribution is then 
o b t a i n e d  f r o m  

Tlo = BT1, 
1 

I -k 1~ Pr~ [ ~'~" (aq-~ n) ~BOw d~. 
B ---- (1 + a  o) 0o~, ~o~ . . J  Pr~, 

0 

Here, 8 = (m - 1)/2. 

DISCUSSION OF THE OBTAINED RESULTS 

The stability of a boundary layer of an incompressible liquid with a surface temperature 
distribution of the form (3) was studied using numerical calculations on a computer. Water 
was chosen as the working substance. The eigenvalue problem (4) and (5) was solved by the 
orthogonalization method [I0]. The profiles of average velocity and temperature were deter- 
mined from the solution of the~ system of equations (6) with the boundary conditions (7), 
which was sought by the Keller method in the form of a grid function [ii]. 

The results of the calculations of the stability characteristics (m = 0) were represented in the 
form of neutral stability curves F = F(R), where F = aCVe/U~, and in the form of dependences 
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Fig. 2. Curves of neutral stability and the spatial growth 
coefficients of the perturbations for a fixed value of the 
Reynolds number R = i0 ~ when the surface is heated accord- 
ing to the law (3): i) uniform temperature distribution 
for a = 0, n = 0, T,/T e = 0.019; 2) nonuniform distribu- 
tion for a = 0, n = i, T,/T e = 0.0353. 

F~g. 3. Curves of the neutral stability in the case of 
strong superheating of the surface according to the law 
(3): I) uniform temperature distribution for = = 0, T,/T e = 
0.097; 2) nonuniform distribution for ~ = 0, n = i, T~/T e = 
0.177. 

of the coefficients of spatial growth of perturbations ~i(F) for fixed values of the Reynolds 
numbers. 

In the first stage of the investigation the growth coefficients ~i, determined by the 
numerical calculation, were compared with the experimental data obtained in [8]. The results 
of this comparison are shown in Fig. I. The experimental data were obtained in a weakly 
turbulent water tube with the degree of turbulence of the free flow equal to 0.1-0.2%. Small 
perturbations were introduced into the boundary layer near the surface of a circumfluous flat 
plate by using a vibratingstrip. The measurements of the growth coefficients were carried 
out for a fixed temperature of the wall in a given point Tw(~) -- Te = 1.67~ Fig. la, Tw(~) -- 
T e = 2.78=C, Fig. ib) and different values of the parameter n for R = 800. It is seen from 
Fig. I that there is a sufficiently good agreement of the theoretical and experimental curves 
which gives grounds to assume that the obtained results are reliable. 

HEATING OF THE SURFACE 

Figures 2 and 3 show the stability characteristics of the boundary layer of water under 
surface heating for different values of the parameters. 

It is seen from Fig. 2 that, under a nonuniform heating of the surface, the region of 
unstable frequencies is narrowed considerably. The minimum critical Reynolds number R* is 
approximately equal to 2.8"103 while under uniform heating, R* = 1.2"103. This indicates 
that the length of the laminar segment increases by almost a factor of 6. For lower values 
of the parameter F, the difference is not so large, but it is still considerable. For ex- 
ample, for F = I'I0 -s, the length which corresponds to the beginning of the growth of pertur- 
bations under a nonuniform heating increases by almost a factor of 1.5. The nonuniform heat- 
ing increases by almost a factor of 1.5. The nonuniformity of the surface temperature dis- 
tribution shows an analogous stabilizing influenceon the velocity of growth of the pertur- 
bations. For a chosen Reynolds number, a i decreases by almost a factor of 3.5. 

Figure 3 corresponds to the case when the maximum superheating of the surface is equal 
to 50~ It is seen that, in this case, the boundary layer becomes more sensitive to nonuni- 
formities of the temperature distribution. The critical Reynolds number increases by almost 
an order of magnitude (R* = 1.37"105 as compared with R* = 1.6"10 ~ under uniform heating) 
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Fig. 4. Curves of neutral stability and the 
coefficients of spatial growth of perturba- 

I tions for a fixed value of the Reynolds 
2p# number R = 2" 103 when the surface is cooled 

according to the law (3): I) uniform tem- 
perature distribution for a = 0, n = 0, 

~2 TI/Te = 0.009; 2) nonuniform distribution 

i for a = 0, n : i, T:/T e : 0.0177. 
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which corresponds to an increase of the length of the laminar segment by a factor of 65. For 
lower values of the parameter F, the difference of the Reynolds numbers also remains consider- 
able. For example, for F = 6.0"10 -8 , the length which corresponds to the beginning of the 
growth of perturbations increases by a factor of two under nonuniform heating. 

COOLING OF THE SURFACE 

As was to be expected, nonuniform cooling reduces the stability of the boundary layer. 
The critical Reynolds number decreases (R* = 370 as compared with R* = 420 under uniform cool- 
ing) and the range of unstable frequencies is reduced. The quantity a i increases approximate- 
ly by a factor of 1.2. The insignificant difference of the curves I and 2 in the case of 
cooling is explained by the fact that, for n = i, the maximum supercooling of the surface is 
small and is equal to only 5~ (Fig. 4). 

Thus, it was established that the form of the surface temperature distribution has a con- 
siderable effect on the stability of the boundary layer of an incompressible liquid. The 
strong sensitivity of the boundary layer of the water to a longitudinal temperature gradient 
makes it possible to control effectively the state of the flow with considerable economy, in 
comparison with the case of uniform temperature distribution. 

NOTATION 

x and y, longitudinal and transverse coordinates; $, n, dimensionless coordinates; u, 
n, velocity components; p, pressure, T, temperature; P, density; Cp, heat capacity; ~, vis- 
cosity; X, thermal conductivity; Pr, Prandtl number; %o, wavelength; a, wave number; c, phase 
velocity of the perturbation; and R, Reynolds number based on the displacement thickness. 
The subscript w corresponds to the wall, e to the external edge of the boundary layer, and 
0 corresponds to a constant surface temperature. 
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